Journal of Organometallic Chemistry, 440 (1992) 197–205 Elsevier Sequoia S.A., Lausanne JOM 22824

SO und NO als Konkurrenzliganden im neuen SO-Komplex RuCl(NO)(SO)(PPh₃)₂

O. Heyke ^a, G. Beuter ^a und I.-P. Lorenz ^b

^a Institut für Anorganische Chemie der Universität Tübingen, Auf der Morgenstelle 18, W-7400 Tübingen (Deutschland) ^b Institut für Anorganische Chemie der Universität München, Meiserstr. 1, W-8000 München 2 (Deutschland)

(Eingegangen den 2. April 1992)

Abstract

The reaction of RuCl(NO)(PPh₃)₂ (1) and thiirane-S-oxide, C_2H_4SO , gives the sulfur monoxide complex RuCl(NO)(SO)(PPh₃)₂ (2) which contains a terminal linear M-N-O arrangement (2*c*3*e* system) and a terminal bent M-S-O ligand function (2*c*2*e* system). The oxidation of 2 with *m*-chloroperbenzoic acid yields the sulfur dioxide complex RuCl(NO)(η^2 -SO₂)(PPh₃)₂ (3) and the sulfato complex RuCl(NO)(SO₄)(PPh₃)₂ (4); a small amount of RuCl(NO)(η^2 -O₂)(PPh₃)₂ (5) is also formed. The characterization of the complexes results from their IR, ³¹P{¹H}, ¹³C{¹H} NMR and mass spectra. The crystal structure of 2 has been determined; space group $P\overline{1}$, Z = 2, *a* 1360.1(3), *b* 1532.1(5), *c* 999.0(2) pm, α 94.09(2), β 105.70(3), γ 65.25(2)°, $R/R_w = 0.091/0.101$.

Zusammenfassung

Bei der Umsetzung von RuCl(NO)(PPh₃)₂ (1) mit Thiiran-S-oxid, C₂H₄SO, entsteht der neue Schwefelmonoxid-Komplex RuCl(NO)(SO)(PPh₃)₂ (2), der neben einer terminal linearen M-N-O-Gruppierung (2c3e-System) eine terminal gewinkelte M-S-O-Ligandenfunktion (2c2e-System) enthält. Die Oxidation von 2 mit *m*-Chlorperbenzoesäure liefert den Schwefeldioxid- bzw. Sulfato-Komplex RuCl(NO)(η^2 -SO₂)(PPh₃)₂ (3) bzw. RuCl(NO)(SO₄)(PPh₃)₂ (4); daneben bildet sich wenig RuCl(NO)(η^2 -O₂)(PPh₃)₂ (5). Zusammensetzung und Struktur der Komplexe ergeben sich aus den IR-, ³¹P{¹H}-NMR-, ¹³C{¹H}-NMR- und Massenspektren. Zusätzlich wurde die Kristallstruktur von 2 bestimmt: Raumgruppe P1, Z = 2, a 1360.1(3), b 1532.1(5), c 999.0(2) pm, α 94.09(2), β 105.70(3), γ 65.25(2)°, $R/R_w = 0.091/0.101$.

Einleitung

In der formalen Redoxkette $H_2S \rightleftharpoons S \rightleftharpoons SO_2 \rightleftharpoons SO_3$ ist Schwefelmonoxid mit Sicherheit das instabilste Molekül [1]. Als Komplexligand wurde SO durch

Correspondence to: Dr. I.-P. Lorenz.

seine erstmalige Komplexstabilisierung in Fe₃(CO)₉S(SO) entdeckt [2], dessen Synthese nach drei unterschiedlichen Varianten gelang [2–4]; zur SO-Generierung wurden Sulfit/Reduktionsmittel [2], Sulfidoligand/Oxidationsmittel [3] und Thionylchlorid [4] verwendet. Als beste SO-Quelle hat sich aber Thiiran-S-oxid [5-9] bewährt, so daß bisher zahlreiche SO-Ligandenfunktionen nachgewiesen werden konnten. Als Heterodichalkogen-Homologes von O2 übertrifft SO bei weitem dessen Koordinationsmöglichkeiten. Wie die O2- [10] spielen auch SO-Komplexe [11] in der bioanorganischen Chemie eine wichtige Schlüsselrolle. Sowohl ihr Auftreten als auch ihr Verhalten bei Redoxreaktionen machen sie als Modellsysteme für die Wirkungsweise von schwefelhaltigen Redoxenzymen, speziell der Sulfitreduktase [11,12], aber auch für die reduktive Variante der Rauchgasentschwefelung interessant. In beiden Fällen wird Sulfit bzw. SO₅ bis zum Schwefel oder Sulfid reduziert; beim Enzym Sulfitreduktase mit einem Sirohem-Eisen-Komplex als aktivem Zentrum könnten intermediäre SO-Komplexe von Eisen durchlaufen werden. Von Eisen und Ruthenium sind inzwischen einige SO-Komplexe dargestellt worden [2–4,13–15].

Für die Titelverbindung RuCl(NO)(SO)(PPh₃)₂ interessierten wir uns, weil in der Ausgangsverbindung RuCl(NO)(PPh₃)₂ (1) NO als 3-Elektronendonor enthalten ist, und SO gute σ -Donor- π -Akzeptor-Eigenschaften besitzt [16]. Wir wollten testen, ob sich NO in Gegenwart von SO in eine 1-Elektronendonor-Funktion zwingen läßt, wobei gleichzeitig SO seine 4-Elektronendonor-Funktion, die es in mehrkernigen SO-Komplexen bevorzugt, ausspielen könnte. Neben dem Vergleich der Lewisazidität beider Liganden interessiert v.a. die komplexchemische Variante eines intramolekularen "push-pull"-Effektes im Sinne von

$$O = \overset{+}{N} = L_n M = \underline{S} \overset{O}{\longrightarrow} \longrightarrow \overset{O}{\longrightarrow} \overline{N} - L_n M = \overset{+}{S} = O$$

Im folgenden wird über die Synthese, Reaktivität und Struktur des neuen SO-Komplexes $RuCl(NO)(SO)(PPh_3)_2$ (2) berichtet.

Resultate und Diskussion

RuCl₃(NO)(PPh₃)₂) kann mit Zinkstaub in siedendem Benzol zu der tetragonal planaren 16-VE-Verbindung RuCl(NO)(PPh₃)₂ (1) reduziert werden [17,18], die sterisch und elektronisch ungesättigt ist und mit vielen Nucleophilen reagiert. Die resultierenden pentakoordinierten Komplexe mit den beispielhaften Liganden O₂ [17], CO [19,20], SO₂ [17] und SO₄²⁻ [21] sind schon lange bekannt, aber lediglich IR-spektroskopisch untersucht worden; nur im Falle von RuCl(NO)(SO₂)(PPh₃)₂ [17] und RuCl(NO)(SO₄)(PPh₃)₂ [21] wurden Röntgenstrukturanalysen durchgeführt. Im folgenden werden diese Komplexe nochmals dargestellt und zusätzlich ³¹P{¹H}-NMR-, ¹³C{¹H}-NMR- und massenspektroskopisch charakterisiert (vgl. Tab. 1) sowie ihr Reaktionsverhalten genauer untersucht.

Die Umsetzung von 1 mit Thiiran-S-oxid führt innerhalb einer halben Stunde gemäß Gl. 1 zu der olivgrünen Verbindung RuCl(NO)(SO)(PPh₃)₂ (2). Der SO-Komplex 2 ist unter Argon bei 0°C längere Zeit unzersetzt haltbar, während er in Lösung mit *m*-Chlorperbenzoesäure gemäß Gl. 2 innerhalb weniger Minuten zum SO₂-Komplex RuCl(NO)(SO₂)(PPh₃)₂ (3) und zum SO₄-Komplex RuCl(NO)-

	IR (cm ⁻¹) ^a	³¹ P{ ¹ H}-NMR ^b	¹³ C{ ¹ H	}-NMR ^c			FAB-MS
	$\nu(NO)$	$\nu(SO)$	$\delta(\text{ppm})$	δ(ppm))			m / z
	(v(CO))	$(\nu(O_2))$		ipso	ortho	meta	para	
2	1651s	1061s	37.0 d 27.6 d ^d	128.6	134.1	128.2	130.5	$738 [M]^+$ 690 $[M - SO]^+$
3	1759s	1148s 877w	30.6 s	129.1	134.4	128.6	131.1	$690 [M - SO_2]^+$
4	1844s	1296s 1172s 889m 668m	19.2 s	128.1	134.9	128.8	131.0	786 $[M]^+$ 722 $[M - SO_2]^+$ 690 $[M - SO_4]^+$
5	1768s	(864m)	26.6 s	128.2	134.5	128.5	130.9	722 $[M]^+$ 690 $[M - O_2]^+$
6	1592s (1923s)		33.1 s	128.8	134.1	128.4	130.5	690 [<i>M</i> – CO] ⁺

Tabelle 1 Ausgewählte IR-, ³¹P{¹H}-NMR-, ¹³C{¹H}-NMR- und FAB-MS-Daten von 2–6

^{*a*} KBr (s = stark, m = mittel, w = schwach). ^{*b*} In CH₂Cl₂ bei -30° C (s = Singulett, d = Dublett). ^{*c*} In CDCl₃ bei RT: Kopplungskonstanten für *o*, *m*: $N = J_{CP} + J_{CP'} = 10-12$ Hz. ^{*d*} $J_{PP} = 242$ Hz.

 $(SO_4)(PPh_3)_2$ (4) oxidiert wird; der Sauerstoffkomplex RuCl(NO)(O_2)(PPh₃)₂ (5) fällt bei dieser Reaktion immer als Nebenprodukt an. Verwendet man zur Oxidation 1 1/2 Mol Persäure, entsteht nach 15 min bei der ³¹P{¹H}-NMR-spektroskopischen Reaktionsverfolgung neben wenig 4, 5 und 2 fast ausschließlich 3, bei dreimolarer Zugabe findet man nach 15 min keinerlei Edukt 2 mehr. Nach eintägiger Reaktionszeit wird in beiden Fällen neben wenig 3 fast ausschließlich Produkt 4 erhalten. Bei höher molarem Zusatz wird schließlich das gesamte Komplexgerüst zerstört; nie wird der NO-Ligand zum NO₂-Liganden oxidiert, sondern immer nur der SO-Ligand zum SO₂- bzw. SO₄-Liganden.

Weiterhin wurde die mögliche Reduktion eines SO₂-Komplexes [22] am Beispiel von 3 zum recht stabilen SO-Komplex 2 untersucht. Mit Wasserstoff tritt keinerlei Reduktion ein; der Einsatz von NaBH₄ führt nur zur Zerstörung des gesamten Komplexgerüstes, während Si₂Cl₆ zur Chlorierung unter Bildung von RuCl₃(NO)-(PPh₃)₂ führt. Vor kurzem gelang die gezielte Reduktion von SO₂-Liganden mit Si₂Cl₆ [23]. Ebenso scheiterte die Synthese eines Thiosulfatokomplexes, der in Analogie zur Palladiumchemie [24] aus 3 und Thiiran-S-oxid bzw. aus 2 und SO₂ über Insertionsreaktionen darstellbar sein sollte. Nach einer halben Stunde Reaktionszeit zeigen in beiden Fällen die ³¹P{¹H}-NMR-Spektren nur ein Gemisch aus

3, 4 und 2 an, wobei nach eintägiger Reaktionszeit ausschließlich der Sulfato-Komplex 4 übrig bleibt.

Von den SO_n-Komplexen **2–4** (n = 1, 2, 4) und den Komplexen **5** und **6** wurden die IR-, ¹H-NMR-, ¹³C{¹H}-NMR- und ³¹P{¹H}-NMR- sowie FAB-MS-Spektren gemessen (vgl. Tab. 1).

Der SO-Komplex 2 zeigt im IR-Spektrum eine sehr tiefliegende NO-Valenzfrequenz bei 1652 cm⁻¹ und eine SO-Valenzfrequenz bei 1061 cm⁻¹. Die Werte von ν (NO) der vergleichbaren Komplexe **3–6** mit linearem NO-Liganden variieren stark zwischen 1592 und 1844 cm⁻¹ [17–21], die ν (NO) bei 1652 cm⁻¹ von **2** zeigt damit eine 2*c*3*e*-NO-Funktion an. Die ν (SO) bei 1061 cm⁻¹ liegt im typischen Bereich einer terminal gewinkelten 2*c*2*e*-SO-Funktion [9]. Aus diesen Gründen läßt sich ableiten, daß NO als 3*e*-Donor und SO als 2*e*-Donor wirkt; einen endgültigen Beweis für die tatsächlichen Ligandenfunktionen kann nur die Kristallstrukturanalyse von **2** liefern.

Im ³¹P{¹H}-NMR-Spektrum von **2** findet man ein AB-System bei $\delta_A = 37.0$ und $\delta_B = 27.6$ mit der Kopplungskonstante $J_{AB} = 242$ Hz. Im Gegensatz dazu findet man für **3–6** jeweils nur Singuletts zwischen $\delta = 12.0$ und 33.1. Um das AB-System von **2** näher zu untersuchen, wurden ³¹P{¹H}-NMR-Spektren bei unterschiedlichen Temperaturen aufgenommen; bei -80° C findet man dasselbe AB-System mit gleichen Kopplungskonstanten wie bei -30° C, bei $+20^{\circ}$ C erkennt man eine deutliche Verbreiterung der Signale. Eine Erhöhung der Temperatur auf $+65^{\circ}$ C (in C₂Cl₄H₂) führte indessen zur Zersetzung und zur Bildung des Eduktes RuCl₃(NO)(PPh₃)₂ [20]. Die Löslichkeit von **2** in nichtehlorierten Solventien ist zu gering, um bessere Aussagen bei diesen Temperaturen zu machen. Diese Ergebnisse zeigen aber, daß die beiden PPh₃-Gruppen bei tiefen Temperaturen unterschiedlich sind. Um die Festkörperstruktur von **2** noch näher zu charakterisieren, wurde auch ein ³¹P-CP-MAS-NMR-Spektrum aufgenommen (vgl. Abb. 1). Man erkennt wiederum das AB-System bei $\delta_A = 32.9$ und $\delta_B = 26.1$ mit $J_{AB} = 242$ Hz.

Die ¹H-NMR-Spektren von **2–6** zeigen erwartungsgemäß jeweils nur ein Multiplett für die Phenylprotonen der Phosphanliganden zwischen 7–8 ppm.

Die ¹³C{¹H}-NMR-Spektren der Verbindungen **2**–**6** ähneln sich sehr; die Phenyl-Kohlenstoffatome der beiden PPh₃-Gruppen werden jeweils in *ipso-*, *o-*, *m-* und *p*-Kohlenstoffatome und durch zusätzliche PC-Kopplungen (außer *p*) noch in AXX'-Systeme aufgespalten. Diese äußern sich im Spektrum als Pseudotripletts mit $N = J_{CP} + J_{CP'} = 10-12$ Hz für die *o-* und *m*-Kohlenstoffatome: die *ipso*-Kohlenstoffatome zeigen oft Pseudoquintett-Aufspaltung bzw. sind teilweise unter den Resonanzen für die *m*-Kohlenstoffatome verborgen.

Tabelle 2

Abb. 1. ³¹P{¹H}-NMR-Spektrum von 2 (a) in CH_2Cl_2 bei 32.4 MHz (-30°C); (b) als Festkörper bei 80.3 MHz (25°C).

In den FAB-Massenspektren von 2-6 findet man außer bei 3 und 6 neben dem $[M]^+$ -Peak stets die Fragmente $[M - X]^+$, $[M - X - Cl]^+$ und $[M - X - Cl - NO]^+$ (X = SO₂, SO₄, O₂, CO und SO).

Für eine Kristallstrukturanalyse geeignete Kristalle konnten aus einer CH_2Cl_2/n -Hexan-Lösung erhalten werden. Die Kristalle verwittern rasch unter Abgabe von Solvensmolekülen. Trotz intensiver Suche konnte kein Kristall optimaler Güte gefunden werden. Der schließlich bei -50° C vermessene Einkristall zeigte ausreichende Streuintensität. Das mit Direkten Methoden ermittelte Strukturmodell konnte jedoch so verfeinert werden, daß eindeutige Strukturaussagen resultierten; die wichtigsten Bindunslängen und -winkel von 2 sind in Tab. 2 zusammengefaßt.

Das zentrale Rutheniumatom des SO-Komplexes 2 ist trigonal bipyramidal umgeben (vgl. Abb. 2), wobei die beiden PPh₃-Gruppen die axialen Positionen einnehmen. Ein Vergleich mit dem entsprechenden SO₂-Komplex 3 [17] zeigt, daß die Ru-P-, Ru-Cl- und Ru-N-Abstände von 2 mit 240, 270 und 171 pm vergleich-

Bindungslänge	en (A) und -wi	nkel (°) in 2 (Sta	ndardabweichi	ing in Klammern)	
Ru-Cl	2.369(4)	Ru-P1	2.427(3)	N-O2	1.15(2)
Ru-S	2.096(5)	Ru-P2	2.401(3)	P-C(Phenyl)	1.79(1)-1.85(1)
Ru-N	1.71(2)	S-O1	1.51(1)	C-C(Phenyl)	1.32(2)-1.45(2)
Ru-N-O2	171(2)	S-Ru-P1	90.1(1)	Cl-Ru-P2	88.8(1)
Ru-S-O1	124.2(7)	Cl-Ru-P1	88.7(1)	S-Ru-N	106(1)
P1-Ru-P2	174.3(1)	P2-Ru-N	83.7(7)	Cl-Ru-S	118.0(2)
P1-Ru-N	94.6(7)	S-Ru-P2	95.6(1)	Cl-Ru-N	136(1)

Abb. 2. SCHAKAL-Zeichnung von RuCl(NO)(SO)(PPh₃)₂ (2).

bar sind mit denen des SO₂-Komplexes **3**; der Ru–S-Abstand ist aber mit 210 pm kürzer als erwartet. Die N–O- und S–O-Bindungslängen liegen mit 115 und 151 pm in der zu erwartenden Größenordnung. Die Stickstoff-, Chlor- und Schwefel-Atome liegen nahezu ideal auf einer Ebene (P1/2–Ru–Cl/N/S = 88.8–95.6°) senkrecht zu den beiden Phosphor-Atomen. Der SO-Ligand ist gewinkelt (Ru–S– $O = 124,4^\circ$), wobei das Sauerstoffatom mit 94.5° fast senkrecht aus der äquatorialen Ebene herausragt. Diese Anordnung und die damit resultierende unterschiedliche chemische Umgebung der beiden PPh₃-Gruppen führen zu dem beobachteten AB-Muster im ³¹P{¹H}-NMR-Spektrum.

Den spektroskopischen und kristallstrukturanalytischen Ergebnissen zufolge koordiniert der NO-Ligand in 2 terminal linear (2c3e-System, 3e-Donor), der SO-Ligand dagegen terminal gewinkelt (2c2e-System, 2eDonor). Als 4e-Donor wirkt SO nur in Mchrkern-Komplexen (4c4e- bzw. 3c4e-Systeme) [9], die terminal lineare SO-Ligandenfunktion (2c4e-System) bleibt unbekannt.

Experimenteller Teil

Alle Arbeiten müssen unter Schutzgas durchgeführt, die Lösungsmittel getrocknet und argongesättigt werden. $RuCl_3(NO)(PPh_3)_2$ [25] als Edukt für 1 [17]. 3-6 [17-21] und Thiiran-S-oxid [26] wurden nach Literaturangaben dargestellt.

Für die spektroskopischen Messungen dienten die folgenden Geräte: ³¹P{¹H}-NMR: Bruker WP 80 bzw. MSL 200 (Meßfrequenz 32.9 bzw. 80.3 MHz; ext. Standard 85proz. H₃PO₄/Aceton- d_6). ¹H- und ¹³C{¹H}-NMR: Bruker WP 250 (Meßfrequenz 250.133 bzw. 62.896 MHz). MS: Varian MAT 711A. 1R: Bruker 1FS 48 mit Rechner Aspect 1000. Elementaranalysen: Anlage der Fa. Carlo-Erba, Modell 1104. Kristallstrukturanalyse: Automatisiertes Einkristalldiffraktometer CAD-4 der Fa. Enraf-Nonius, Delft (Graphitmonochromator. Cu- K_{α} -Strahlung, A 154.0 pm). Tabelle 3

Kristall- und Meßdaten von	2 · CH	$_2Cl_2$
----------------------------	--------	----------

Formel C ₃₇ H ₃₂ Cl ₃ NO ₂ P ₂ RuS	Formeleinheiten $Z = 2$
Molmasse 823.11	Dichte $d_{\text{ber.}}$ 1.544 g/cm ³
Kristallsystem triklin	Gesamtzahl der Reflexe 4808
Raumgruppe P1	symmetrieunabhängige Reflexe
Gitterkonstanten	mit $I \ge 3\sigma(I)$ 4007
<i>a</i> 1360.1(3) pm	Verfeinerte Parameter 193
<i>b</i> 1532.1(5) pm	Meßbereich θ_{max} 69°
<i>c</i> 999.0(2) pm	Absorptionskoeffizient 73.808 cm^{-1}
α 94.09(2)°	R = 0.091
β 105.70(3)°	$R_{\rm w} = 0.101$
γ 65.25(2)°	Meßtemperatur – 50°C
$V 1807.2 \times 10^6 \text{ pm}^3$	

Chloronitrosylschwefelmonoxidbis(triphenylphosphan)ruthenium(0) (2)

Zu einer Lösung von 73 mg (0.105 mmol) 1 in 10 ml Benzol werden 0.1 ml (1.31 mmol) Thiiran-S-oxid gegeben, wobei sie sich sofort olivgrün verfärbt. Nach 1 h Rühren wird mit 30 ml n-Hexan der olivgrüne Niederschlag gefällt und i. Vak. getrocknet. Ausbeute: 70 mg (90%); Zers.: 106°C. Gef.: C, 57.80; H, 4.33; S, 4.93; N, 1.40. C_{36} ClH₃₀NO₂P₂RuS (738.5) ber.: C, 58.50; H, 4.06; S, 4.33; N, 1.90%.

Oxidation von 2 zu 3 bzw. 4

50 mg (0.068 mmol) **2** werden in 3 ml CH_2Cl_2 gelöst und tropfenweise mit einer Lösung von 50 mg (0.204 mmol) *m*-Chlorperbenzoesäure in 2 ml CH_2Cl_2 versetzt; die grüne Lösung wird sofort rotgelb. Bei der Reaktionsverfolgung mit ³¹P{¹H}-NMR-Spektren findet man nach 15 min viel **3** und sehr wenig **4**, nach einem Tag wenig **3** und hauptsächlich **4**, eine Isolierung ist nach den angegebenen Zeiten möglich. **5** entsteht immer in geringen Mengen als Nebenprodukt bei der Oxidation. Die Charakterisierung der entstandenen Komplexe erfolgte IR- und ³¹P{¹H}-NMR-spektroskopisch durch Vergleich mit authentischen Proben [17–21].

Kristallstruktur von 2 [27]

Grüne Kristalle von $2 \cdot CH_2Cl_2$ wurden bei 5°C aus einer CH_2Cl_2 -Lösung, in die langsam n-Hexan diffundierte, erhalten. Die Kristalle wurden bei – 50°C auf dem Gerät CAD-4 vermessen, Tab. 3 enthält die Meß- und Kristalldaten, Tab. 4 die Lage- und Temperaturparameter. Die Lage der Ru- und P-Atome wurde mit Direkten Methoden ermittelt [28], die Positionen der anderen Atome (außer Wasserstoffatomen und Lösungsmittelmolekülen) mittels Differenzfouriersynthesen [29] bestimmt und anschließend isotrop verfeinert.

Dank

Der Deutschen Forschungsgemeinschaft, dem Verband der Chemischen Industrie, e.V., Fonds der Chemischen Industrie und der Degussa AG sind wir für die finanzielle Förderung dieser Arbeit zu Dank verpflichtet; Herrn Prof. Dr. J. Strähle danken wir für die Bereitstellung des Diffraktometers. O.H. dankt dem Fonds der Chemischen Industrie für ein Doktorandenstipendium.

1_ageparam	eter und Temperaturpa	rameter B_{eq} bzw. B_{iso}	(10)" pm ⁺) der Atom	$10 III I CH_2 CH_2.$
Atom	X	Y	(1	B "
Ru	0.91746(7)	0.30527(6)	0.34460(8)	3.18(1)
Ω	0.8249(3)	0.2474(3)	0.1464(4)	6.59(8)
6	0.590(2)	0.076(2)	(1.038(2))	$\frac{10.7(3)}{22.8(6)}$
S	(1.9470(3))	0.4263(3)	0.3163(4)	5.61(7)
ΡI	0.0953(2)	0,1996(2)	0.2984(3)	3.54(5)
P2	0.7394(2)	0.3955(2)	(1.3941(3))	3.48(5)
<u>0</u>	0.869(1)	0.5288(9)	0.332(1)	7.3(3)
02	-1.009(1)	0.746(1)	0.365(2)	10.2(4)
011	1.0105(6)	0.7657(6)	(1,4379(7))	4.1(1)
Z	(1.036(2))	0.722(2)	(0.480(2))	11.0(5)
C	0.747(3)	0.056(3)	0.159(4)	15(1)
CIII	0.1324(9)	0.2371(8)	0.157(1)	3.7(2)
	0.950(1)	0.712(1)	0.957(1)	5.5(3)
CII	0.516(1)	0.000000	(1)/0.0	(4)0.4)
	0.267(1)	0.247(1)	0.051(1)	6.0(3)
C116	0.242(1)	0.220(1)	0.164(1)	5.3(3)
C121	0.2177(8)	0.1783(8)	0.447(1)	3,4(2)
C122	0.695(1)	0.908(1)	0.521(1)	5.0(3)
CID	0.600(1)	0.921(1)	0.408(1)	6.1(3)
2017 11	(1)589 ()	0.753(1)	0.36401	
C126	0.218(1)	0.2589(9)	0.525(1)	4.4(2)
C134	0.102(1)	0.0810(9)	0.258(1)	4.2(2)
C132	0.061(1)	0.036(1)	0.332(1)	5.7(3)
C133	0.063(1)	0.948(1)	(1.304(2))	6.9(4)
C134	0.105(2)	0.896(2)	0.202(2)	8.3(5)
	0.145(3)	(5)040.0	0.120(3)	(6)(11 (12)(12)
C211	0.2439(8)	0.5641(7)	0.426(1)	3.3(2)
(1212	0.279(1)	0,6008(9)	0.334(1)	4.6(2)
C213	(1.159(1))	0.571(1)	(1.192(2)	5.0(3)
C214	0.209(1)	0.511(1)	0.152(2)	4.8(3)
010	0.1/5(1)	0.474(1)	0.246(1)	(F) (F)
(331	0.6615(9)	(8)8665 () (6)06067	(1)336(1)	4.0033
C222	0.543(1)	0.3610(9)	0.332(1)	4.3(2)
C223	0.486(1)	0.307(1)	0.336(1)	5.3(3)
(1224	0.542(1)	0.213(1)	(1.395(1))	5.8(3)
012 012	0.659(1)	0.1/2(1)	0.448(2)	6.8(4)
(23)	0.6419(8)	().5()45(8)	0.284(1)	3 4(7)
C232	0.562(1)	0.580(1)	(1.332(1))	4.9(3)
(1233	0.485(1)	0.659(1)	0.245(1)	5.4(3)
(1234	().490(1)	(1.661(1))	0.106(1)	5,7(3)
C235	0.569(1)	0.587(1)	0.061(2)	6.2(3)
0.230	(1 V 1 010	(6)79000	0.148(1)	4.7(2)
" Dis Atom	a hora and a factor of the second sec			

' Die Atomlagen wurden isotrop verfeinert.

Literatur

- 1 Gmelin Handbuch der Anorganischen Chemie, 8. Aufl. (Schwefel, Ergänzungsband 3), Springer, Berlin 1980.
- 2 L. Marko, B. Marko-Monostory, T. Madach und H. Vahrenkamp, Angew. Chem., 92 (1980) 225; Angew. Chem., Int. Ed. Engl., 19 (1980) 226.
- 3 J. Messelhäuser und I.-P. Lorenz, Z. Naturforsch, Tcil B, 39 (1984) 403.
- 4 A. Winter, L. Zsolnai und G. Huttner, J. Organomet. Chem., 234 (1982) 337.
- 5 W.A. Schenk, J. Leißner und C. Burschka, Z. Naturforsch. Teil B, 40 (1985) 1264.
- 6 I.-P. Lorenz, J. Messelhäuser, W. Hiller und K. Haug, Angew. Chem., 97 (1985) 234; Angew. Chem., Int. Ed. Engl., 24 (1985) 228.
- 7 A. Neher, O. Heyke und I.-P. Lorenz, Z. Anorg. Allg. Chem., 578 (1989) 185.
- 8 G. Besenyei, C. Lee, J. Gulinski, S.J. Rettig, B.R. James, D.A. Nelson und L.A. Lilga, Inorg. Chem., 26 (1987) 3622.
- 9 W.A. Schenk, Angew. Chem., 99 (1987) 101; Angew. Chem., Int. Ed. Engl., 26 (1987) 98.
- 10 W. Kaim und B. Schwederski, Bioanorganische Chemie, B.G. Teubner, Stuttgart, 1991 S. 87.
- 11 W.R. Scheidt, Y. Ja. Lee und M.G. Finnegan, Inorg. Chem., 27 (1988) 4725.
- 12 L.M. Siegel, P.S. Davis und H.J. Kamin, J. Biol. Chem., 249 (1974) 1572.
- 13 J.-P. Lorenz, J. Messelhäuser, W. Miller und M. Conrad, J. Organomet. Chem., 316 (1986) 121; J.-P. Lorenz, W. Miller und M. Conrad, Z. Naturforsch., Teil B, 40 (1985) 1383.
- 14 W.A. Schenk, U. Karl, M.R. Horn und S. Müssig, Z. Naturforsch., Teil B, 45 (1990) 239.
- 15 W.A. Schenk und U. Karl, Z. Naturforsch., Teil B, 44 (1989) 988.
- 16 J. Messelhäuser, Dissertation 1986, Tübingen.
- 17 R.D. Wilson und J.A. Ibers, Inorg. Chem., 17 (1978) 2114.
- 18 M.H. Stiddard und R.E. Townsend, J. Chem. Soc., Chem. Commun., (1969) 1372.
- 19 K.R. Laing und W.R. Roper, J. Chem. Soc., Chem. Commun., (1968) 1556.
- 20 K.R. Laing und W.R. Roper, J. Chem. Soc. (A), (1970) 2149.
- 21 J. Reed, S.L. Soled und R. Eisenberg, Inorg. Chem., 13 (1974) 3001.
- 22 A. Neher und I.-P. Lorenz, Angew. Chem., 101 (1989) 1389; Angew. Chem., Int. Ed. Engl., 28 (1989) 806.
- 23 O. Heyke, Dissertation 1991, Tübingen; G. Walter, Dissertation 1991, Tübingen.
- 24 O. Heyke, A. Neher und I.-P. Lorenz, Z. Anorg. Allg. Chem., 608 (1992) 23.
- 25 N. Ahmad, J.J. Levison, S.D. Robinson und M.F. Uttley, Inorg. Synt., 15 (1974) 51.
- 26 K. Kodo und A. Negishi, Tetrahedron, 27 (1971) 4821.
- 27 Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, W-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-56270, der Autoren und des Zeitschriftenzitats angefordert werden.
- 28 G.M. Sheldrick, SHELXS-86, Fortran Program for Crystal Structure Determination, Göttingen, 1986.
- 29 B.A. Frenz und Fa. Enraf-Nonius, The Enraf-Nonius CAD4-SDP: a Real-Time System for Concurrent X-ray Data Collection and Crystal Structure Determination, in H. Schenk, R. Olthof-Hazekamp, H. von Koningsveld und G.C. Bassi (Hrsg.), Computing in Crystallography, Delft University Press, 1978, VAX-SDP Version 3.0 1986.